
Int J Thermophys (2008) 29:1523–1536
DOI 10.1007/s10765-008-0475-0

Analytical Prediction of Quench Energies of Cooled
Superconductors Based on the Hyperbolic Heat
Conduction Model

M. Q. Al-Odat · F. M. Al-Hussien

Received: 19 September 2007 / Accepted: 25 May 2008 / Published online: 17 July 2008
© Springer Science+Business Media, LLC 2008

Abstract The critical energy characteristics of cooled composite superconductors
is analytically predicted based on the one-dimensional hyperbolic heat conduction
model. The temperature dependence of the Ohmic heat generation, the finite speed of
heat transfer, and the finite duration and finite length of the thermal disturbances are
taken into account in the present model. The critical energies are calculated using a
model based on the analytical solution of the hyperbolic heat conduction equation by
the Laplace transformation method. The computational model results show that the
critical energy depends on the relaxation time and disturbance duration. It is found
that the hyperbolic conduction model predicts a lower-critical energy as compared to
the predictions of the parabolic heat conduction model.

Keywords Superconductors · Critical energy · Thermal stability · Hyperbolic heat
conduction · Non-Fourier heat conduction · Laplace transform

1 Introduction

The minimum amount of energy that triggers quenching for a superconductor is
called the critical energy, and it is an indication of the thermal stability of super-
conducting magnets. The superconductor’s critical energy depends on many factors,
such as cooling conditions, current density, magnetic field, thermal properties of the
conductor, heat disturbance duration and length, etc. If the disturbance energy does
not exceed the critical energy, quenching will never occur, and the superconduc-
tor is said to be thermally stable. Otherwise, a local normal zone can be initiated;
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this normal zone may grow or shrink depending on the operating conditions of the
superconductor. The normal zone characteristics are investigated via critical energy
predictions based on the analysis of the transient temperature field in the normal
zone.

Due to its important application in engineering technologies, such as nuclear fusion,
superconducting switches, fault-current limiters, cellular phone base stations, and
power distribution networks, the problem of critical energy prediction has been inves-
tigated by many authors [1–11]. Most previous studies were based on the parabolic
(classical diffusion) heat conduction model which assumes an infinite speed of heat
transport in the composite conductor, to compute the critical energy of cooled or
uncooled superconductors [1–10]. Very few of them have considered the hyperbolic
conduction model to study the thermal stability of superconductors using numerical
and analytical solution methods [12–15]. The use of an analytical method to calculate
the critical energy of uncooled superconductors under the effect of the one-dimensional
hyperbolic heat conduction was carried out by Lewandowska and Malinowski [16].
In most practical superconducting applications, the classical Fourier law (parabolic
equation) of heat conduction results are adequate. However, there are many applica-
tions where the use of the hyperbolic model becomes necessary, such as ultra-fast heat
conduction processes, heat conduction at cryogenic temperatures, and cases where the
time of interest is very short and when the heat source in the conductor depends on
temperature and/or time [17–20]. In operation, superconductors are subjected to all of
these circumstances to some extent. Under these circumstances, the heat propagation
speed can be finite.

Based on the authors’ best knowledge, an analytical model to predict the critical
energy of cooled superconductors based on the hyperbolic heat conduction model
has not been yet reported. This is the main motivation of the present study which is
devoted to investigate analytically the characteristics of the critical energy of cooled
superconductors based on the hyperbolic heat conduction model. In order to predict
the critical energy, the hyperbolic heat condition equations are solved analytically by
means of a Laplace transformation technique. In the present model, the finite duration
and finite length of thermal disturbances are taken into consideration. The critical
energies obtained from the hyperbolic model are compared with those predicted by
the parabolic model. The effects of various parameters on the cooled superconductor
critical energy were analyzed in detail.

2 Problem Formulation and Analysis

Consider a very long composite superconductor of diameter (d) carrying an electri-
cal current perpendicular to the x-y plane and subjected to a thermal disturbance as
shown in Fig. 1. The composite superconductor consists of superconducting strands
(filaments) embedded in a high purity metal. The superconductor is laterally cooled
using a cooling liquid having a convective heat transfer coefficient h. The superconduc-
tor is subjected to an external thermal disturbance of finite length and finite duration.
The temperature fields in the superconductor composite and the quenching process
are governed by the energy equation coupled with the hyperbolic heat conduction
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Fig. 1 Schematic diagram for the problem under consideration

constitution law. With the assumption of constant and isotropic thermal properties, the
governing equations are given as

C
∂T (x, t)

∂t
= k∇ · q − P

A
[h(T − T0)+ g(T )+ D(x, t)] (1)

q(x, t)+ tq
∂q(x, t)

∂t
= −k∇T (x, t) (2)

Eliminating the heat flux vector q between Eqs. 1 and 2 leads to the hyperbolic heat
conduction equation describing the temperature field in the superconducting compos-
ite as follows:

1

α

∂T

∂t
+ tq
α

∂2T

∂t2 = ∂2T

∂x2 + P

k A

[
g(T )+ tq

∂g(T )

∂t

+D(T )+ tq
∂D

∂t
− Q(T )− tq

∂Q(T )

∂t

]

(3)

where tq is the relaxation time which represents the delay of the heat flux with respect
to the change in temperature gradient, α is the thermal diffusivity, k is the thermal
conductivity, P is the wetted perimeter, A is the cross-sectional area of the con-
ductor, g(x, t) is the Ohmic heat generation, D(x, t) is the external thermal distur-
bance energy, and Q(T ) is the heat transfer to the coolant. Q(T ) = h(T − T 0).
Equation 3 describes the behavior of a damped temperature wave with a finite speed
equal to w = [α/tq ]0.5. When tq → 0 and w → ∞, Eq. 3 reduces to the classical
parabolic (Fourier law) equation of heat conduction. The thermal disturbance energy
is simulated as a rectangular heat pulse in x and t , as follows:

D(x, t) =
{ E

2plti
for − l < x < l and 0 < t < ti

0 outside this region
(4)
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The steady capacity of the Ohmic heat generation in the conductor is calculated based
on the current sharing model [3] as

g(T ) =

⎧⎪⎨
⎪⎩

0 for T ≤ Tcs
g max

f
T −Tcs
Tc−Tcs

for Tcs < T < Tc
g max

f for T ≥ Tc

(5)

where gmax = ρ2 J/ f P is the Ohmic heat generation with the entire current in the
stabilizer. The current sharing function g(T ) given in Eq. 5 is based on the assumption
that the critical current density of the superconductor is a linear function of temper-
ature at a fixed magnetic field. In order to obtain an analytical solution to Eq. 3, the
Ohmic heat term shoud be linearized as

g(T ) = a(T − To) (6a)

where

a = gmax

(Tcs + Tc − 2To)
(6b)

Tcs = Tc − I

Ic
(Tc − To) (6c)

The initial and boundary conditions are

T (x, 0) = To,
∂T (x, y, 0)

∂t
= Ṫi (7)

T (−l, t) = T (−l, t) = T0, (8)

It is more convenient to rewrite Eqs. 3–8 using the following dimensionless parame-
ters:

ξ = x

l
, τ = αt

l2 , θ = T − T0

Tc − T0
,

Bi = h Pl2

Ak
,G = Pl2gmax

Ak(Tc − T0)
, φ = E

2AlC(Tc − T0)

⎫⎪⎪⎬
⎪⎪⎭

(9)

The dimensionless form of the governing equation can be written in terms of the
dimensionless parameters of Eq. 9 as

τq
∂2θ

∂τ 2 + ∂θ

∂τ
= ∂2θ

∂ξ2 +
(

G

1 + θc
− Bi

)(
θ + τq

∂θ

∂τ

)

+ ϕ

τi

(
u(ξ, τ )+ τq

∂u(ξ, τ )

∂τ

)
(10)
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where

u(ξ, τ ) =
{

1 for − 1 ≤ ξ ≤ 1 and 0 ≤ τ ≤ τi

0 outside this region
(11)

Due to the symmetry of the normal zone, the analysis is limited to the half zone, i.e.,
to the domain that lies within 0 ≥ x ≥ l. Equation 10 can be solved separately for
the normal part of the conductor that is subjected to the heat disturbance, and for the
superconducting part. This results in the following two equations:

τq
∂2θ1

∂τ 2 + ∂θ1

∂τ
= ∂2θ1

∂ξ2 +
(

G

1 + θc
− Bi

)(
θ1 + τq

∂θ1

∂τ

)

+ ϕ

τi

(
u(τ )+ τq

∂u(τ )

∂τ

)
(12)

τq
∂2θ2

∂τ 2 + ∂θ2

∂τ
= ∂2θ2

∂ξ2 +
(

G

1 + θc
− Bi

)(
θ2 + τq

∂θ2

∂τ

)
(13)

with the following initial and boundary conditions,

θ1(ξ, 0) = 0, θ2(ξ, 0) = 0
∂θ1(ξ, 0)

∂τ
= φ

τi

∂θ2(ξ, 0)

∂τ
= 0

⎫⎬
⎭ (14)

∂θ1(0, τ )

∂τ
= 0,

∂θ1(1, τ )

∂τ
= ∂θ2(1, τ )

∂τ
θ1(1, τ ) = θ2(1, τ ) θ2(∞, τ ) = 0

}
(15)

where

u(τ ) =
{

1 for 0 ≤ τ ≤ τi

0 outside this region
(16)

2.1 Solution Methodology

The governing equations are solved analytically by means of the Laplace transforma-
tion technique. Taking the Laplace transform of Eqs. 11 and 12 and utilizing the initial
conditions of Eq. 13 gives

d2θ̄1

dξ2 −
(
τqs2 + s −

(
G

1 + θc
− Bi

)
(1 + τqs)

)
θ̄1 = − ϕ

τi

(
ū(s)(1 + τqs)

)
(17)
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d2θ̄2

dξ2 −
(
τqs2 + s −

(
G

1 + θc
− Bi

)
(1 + τqs)

)
θ̄2 = 0 (18)

where θ̄2(ξ, s) = L [θ(ξ, τ )].
The Laplace transformation of the boundary conditions are

dθ̄1(0, s)

dξ
= 0, θ̄2(∞, s) = 0

θ̄1(1, s) = θ̄2(1, s)
dθ̄1(1, s)

dξ
= dθ̄2(1, s)

dξ

⎫⎪⎪⎬
⎪⎪⎭

(19)

The solution of the ordinary differential Eqs. 17 and 18 subjected to the boundary
conditions of Eq. 19 are

θ̄1(ξ, s) = ϕū(s)

2τi

(
s −

(
G

1+θc
− Bi

))

−
{

2 − exp
[
−(1 − ξ)

√
ψ(s)

]
− exp

[
−(1 + ξ)

√
ψ(s)

]}
(20)

θ̄2(ξ, s) = ϕū(s)

2τi

(
s −

(
G

1+θc
− Bi

))

−
{

exp
[
(1 − ξ)

√
ψ(s)

]
− exp

[
−(1 + ξ)

√
ψ(s)

]}
(21)

where ψ(s) = (
1 + τqs

) (
s −

(
G

1+θc
− Bi

))
.

The critical energy is calculated by analyzing the maximum temperature in the
conductor that occurs at the center of the normal zone (i.e., ξ = 0).

θ̄1(0, s) = ϕū(s)

2τi

(
s −

(
G

1+θc
− Bi

)) −
{

1 − exp
[√
ψ(s)

]}
(22)

In this case the dimensionless temperature in the superconducting zone is zero as can
be revealed from Eq. 21 for ξ = 0.

The inverse transformation of Eq. 22 is found to be

θ1(0, τ ) =
{ ϕ
τi
ψ1(τ ) for τ <

√
τq

ϕ
τi
(ψ1(τ )− ψ2(τ )) for τ ≥ √

τq
(23)
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where

ψ1(τ ) = 1(
s −

(
G

1+θc
− Bi

))

− exp

[(
G

1 + θc
− Bi

)
τ

]{
1 − exp

[(
G

1 + θc
− Bi

)
τq

]}
(24a)

ψ2(τ ) = exp

⎛
⎝

(
G

1+θc
− Bi

) (
τq − 1

)
2
√
τq

⎞
⎠ψ1(τ − √

τq)

+
⎛
⎝

(
G

1+θc
− Bi

) (
τq − 1

)
2
√
τq

⎞
⎠

×
τa∫

√
τq

ψ1(τ − y)

(
exp

(
(− G

1 + θc
− Bi)τq

)
− 1

)
y

2τq

×I1

(
− G

1 + θc
− Bi

)
τq

√
(y2 − τq) (24b)

and τa is defined as

τa =
{
τ for 0 < τ ≤ τi

τi for τ > τi
(25)

For the parabolic heat conduction case (τq = 0), Eq. 22 can be written as

θ̄1(0, s) =
ϕū(s)

{
1 − exp

[
−
√(

s −
(

G
1+θc

− Bi
))]}

τi

(
s −

(
G

1+θc
− Bi

)) − (26)

Thus, the inversion of the temperature field in the parabolic heat conduction case can
be computed by taking the inverse of Eq. 26 as

θ1(0, τ ) = ϕ

τi

τa∫
0

− exp

[(
G

1 + θc
− Bi

)
(τ − y)

]
erf

[
0.5

√
τ − y

]
dy (27)

In this investigation, if the minimal value of the maximum transient temperature for
τ ≥ τi equals the current sharing temperature, then the critical energy of the conductor
is assumed to be equal to the disturbance energy.
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Therefore, the critical energy of the conductor can be computed, for the parabolic
heat conduction model, as

εp = τiθcs∫ τi
0 exp

(
G

1+θc
− Bi

) [
(τm − y)erf

[
0.5(τm − y)−0.5

]]
dy

(28a)

For the hyperbolic heat conduction model,

εw = τiθcs

f1(τm)− f1(τm)
(28b)

where θ1(0, τ ≥ τi ) = θ(0, τm) = θcs.

3 Results and Discussion

The critical energy was computed analytically based on the analysis of the normal
zone propagation in the conductor for selected values of the main factors affecting the
problem under consideration, such as the Ohmic heat generation, the current sharing
temperature, the duration time of the disturbance, and the thermal relaxation time.

Figure 2 shows the influence of Ohmic heating sources G on the transient response
of the superconducting-tape maximum temperature θ1 based on the hyperbolic model
and the associated diffusion model. For G = 0.2, φ is less than the critical energy.
For G = 1, φ is equal to the critical energy, while φ is greater than the critical energy
for G = 8. The present wave behavior of the maximum temperature displayed in
Fig. 2 has three different characteristics in three time intervals. For τ ≤ τi during the

Fig. 2 Influence of Ohmic heat generation (G) on maximum temperature in the normal zone, time variations
for Bi = 0.1, φ = 0.5, τi = 0

123



Int J Thermophys (2008) 29:1523–1536 1531

2                   4 6 8 2 4 6 80.1 1.0

0.2

0.4

0.6

0.8

1.0

G= 0.25

τ i

G= 0.75
ε p

,ε
w

τq = 0.2, 0.1, 0.05, 0

G= 0.075

Fig. 3 Variation of critical energy with heat disturbance duration time for different values of Ohmic heat
generation and relaxation times for Bi = 0.1, φ = 0.5, θcs = 0.15

disturbance influence, the maximum conductor temperature is changed essentially due
to heat absorption. In this time interval, the effect of heat absorption and the difference
between the predictions of the two considered models is negligible. For a time of the
order of τ = O(

√
τq), the predictions of the two models are diverging. For large

values of time, there are two distinguishing behaviors, one for small G and the other
for large G. For small G both temperatures coincide. However, for a large value of
G, the difference between the predictions of the two models increases monotonically
with time.

The variation of the critical energy with the heat disturbance duration time for dif-
ferent values of Ohmic heat generation and relaxation times is illustrated in Fig. 3. It
can be seen that the critical energy is constant until a certain value of τi is reached
(about 0.4), then a decreasing behavior is observed. Furthermore, the hyperbolic model
predicts a lower critical energy compared to the classical heat diffusion (parabolic)
model. Furthermore, it is clear that the difference between the two models is more
noticeable for larger values of G.

Figure 4 displays the dependence of the critical energy on the current sharing tem-
perature for different values of Ohmic heat generation and relaxation times for Bi =
0.1, φ = 0.5, and τi = 0.25. It is obvious that the critical energy increases as the
current sharing temperature decreases. This can be attributed to the increase of heat
generation as θcs decreases, because for smaller θcs, more current passes through the
conductor part. In addition, the difference between the predictions of the two models
is more noticeable for a higher value of G and increases as θcs decreases.

The dependence of the critical energy on Ohmic heat generation for different values
of the current sharing temperature and relaxation times is shown in Fig. 5. It is clear
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Fig. 4 Dependence of critical energy on heat current sharing temperature for different values of Ohmic
heat generation and relaxation times for Bi = 0.1, φ = 0.5, τi = 0.25
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Fig. 5 Dependence of critical energy on Ohmic heat generation for different values of current sharing
temperature and relaxation times for Bi = 0.1, φ = 0.5, τi = 0.25

that the critical energy decrease noticeably with G. Moreover, the difference between
the two models is significant for smaller values of the current sharing temperature.

Figure 6 demonstrates the influence of the Biot number on the critical energy at dif-
ferent values of the Ohmic heat generation and relaxation times. The critical energy
increases drastically by increasing the Biot number. This is due to the increased con-
vective cooling effect. The convective cooling (Biot number) is an effective way that
can be used to increase the critical energy (thus increase the thermal stability) of
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Fig. 6 Dependence of critical energy on Biot number for different values of Ohmic heat generation and
relaxation times for Bi = 0.1, φ = 0.5, τi = 0.25, θcs = 0.3

superconductors. Additionally, the difference between the predictions of the two mod-
els increases as the Biot number increases.

The effect of the disturbance duration time on the percentage difference between the
critical energies calculated based on the two models is depicted in Fig. 7. The percent-
age difference between the critical energies is defined as �ε = (εp−εw/εp) × 100.
This effect has a complex characteristic. �ε increases with duration time until it
reaches a maximum, then it decreases. In addition, the maximum �ε decreases as
the relaxation time decreases (as the model attains the classical conduction model).
The rate of increase in the percentage difference is greater for higher values of the
relaxation time.

Figure 8 shows the influence of the Biot number on the percentage
difference between critical energies calculated based on the two models. The percent-
age difference �ε increases as the Biot number increases. In addition, �ε decreases
as the relaxation time decreases. Therefore, for superconductors subjected to severe
cooling conditions, the use of the hyperbolic model becomes essential.

4 Concluding Remarks

An analytical model to compute the critical energy of cooled composite superconduc-
tors based on the hyperbolic conduction model is presented. The present model takes
into account the temperature dependence of the Ohmic heat generation, the finite speed
of heat transfer, and the finite duration and finite length of the thermal disturbances.
This study show that the critical energy increases as both the current sharing temper-
ature and Biot number increase. Whereas, increases in the Ohmic heat generation and
the disturbance duration time result in a decrease in the superconductor critical energy.
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Fig. 7 Effect of disturbance duration, time on percentage difference of critical energy, calculated based on
hyperbolic model for G = 1, Bi = 0.2, φ = 0.5, τi = 0.25, θcs = 0.3

Fig. 8 Influence of Biot number on percentage difference of critical energy calculated based on hyperbolic
model for G = 1, τi = 0.2, φ = 0.5, τi = 0.25, θcs = 0.3

It is found that the hyperbolic conduction model predicts a lower critical energy as
compared to the predictions of the parabolic heat conduction model. The difference
between the predictions of the two models increases as the current sharing tempera-
ture increases. Furthermore, the difference between the predictions of the two models
increases as the relaxation time, Ohmic heat generation, and Biot number increase.
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Nomenclature

a Constant given in Eq. 6
A Conductor cross sectional area, m2

C Heat capacity, ρcP (J · m−3 · K−1)
d Superconductor diameter
D External thermal disturbance
E Energy of heat disturbance, J
f Volume fraction of the stabilizer in conductor
g(T ) Ohmic Joule heating per unit lateral surface of conductor, W · m−2

G Dimensionless Joule heating source
gmax Maximum Joule heating with the whole current in the stabilizer, W·m−3

h Convective heat transfer coefficient, W · m−2 · K−1

I Transport current, A
J Current density, A · m−2

k Thermal conductivity of conductor, W · m−1 · K−1

l Width of conductor subjected to heat disturbances, m
P Wetted perimeter
q Conduction heat flux, W · m−2

t Time, s
T Temperature, K
T0 Initial temperature or ambient temperature, K
Tc Critical temperature, K
Tcs Current sharing temperature, K
ti Duration time of disturbance, s
tq Relaxation time of heat flux, s
w Speed of the temperature wave, m · s−1

x Co-ordinate defined in Fig. 1, m

Greek Symbols
α Thermal diffusivity
�ε Percentage difference between the critical energies predicted by the

two models
εp Critical energy calculated based on parabolic heat conduction model
εw Critical energy calculated based on hyperbolic heat conduction model
φ Dimensionless energy of heat disturbance
τ Dimensionless time
τi Dimensionless duration time
θ Dimensionless temperature
θcs Dimensionless current sharing temperature
θ1 Dimensionless maximum temperature
ξ Dimensionless x-variable
ρo Stabilizer electrical resistivity, �
τI Dimensionless duration time of disturbance
τq Dimensionless relaxation time of heat flux
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Subscripts
0 Ambient
1 Disturbed
2 Non-disturbed zones
c Critical zone
cs Current sharing
max Maximum
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